História 

          O cálculo integral se originou com problemas de quadratura e cubatura. Resolver um problema de quadratura significa encontrar o valor exato da área de uma região bidimensional cuja fronteira consiste de uma ou mais curvas, ou de uma superfície tridimensional, cuja fronteira também consiste de pelo menos uma curva. Para um problema de cubatura, queremos determinar o volume exato de um sólido tridimensional limitado, pelo menos em parte, por superfícies curvas. Hoje, o uso do termo quadratura não mudou muito: matemáticos, cientistas e engenheiros comumente dizem que "reduziram um problema a uma quadratura", o que significa que tinham um problema complicado, o simplificaram de várias maneiras e agora o problema pode ser resolvido avaliando uma integral.

        Historicamente, Hipócrates de Chios (cerca de 440 A.C.) executou as primeiras quadraturas quando encontrou a área de certas lúnulas, regiões que se parecem com a lua próxima do seu quarto crescente. Antiphon (cerca de 430 A.C.) alegou que poderia "quadrar o círculo" (isto é, encontrar a área de um círculo) com uma seqüência infinita de polígonos regulares inscritos: primeiro um quadrado; segundo um octógono, a seguir um hexadecaedro, etc. Seu problema era o "etc.". Como a quadratura do círculo de Antiphon requeria um número infinito de polígonos, nunca poderia ser terminada. Ele teria que ter usado o conceito moderno de limite para finalizar seu processo com rigor matemático. Mas Antiphon tinha o início de uma grande idéia agora chamado de método de exaustão. Mais de 2000 anos depois, creditamos a Eudoxo (cerca de 370 A.C.) o desenvolvimento do método de exaustão: uma técnica de aproximação da área de uma região com um número crescente de polígonos, com aproximações melhorando a cada etapa e a área exata sendo obtida depois de um número infinito destas etapas; esta técnica foi modificada para atacar cubaturas também.

          Arquimedes (287--212 A.C.), o maior matemático da antiguidade, usou o método de exaustão para encontrar a quadratura da parábola. Arquimedes aproximou a área com um número grande de triângulos construídos engenhosamente e então usou o argumento da redução ao absurdo dupla para provar o resultado rigorosamente e evitar qualquer metafísica do infinito. Para o círculo, Arquimedes primeiro mostrou que a área depende da circunferência; isto é muito fácil de se verificar hoje em dia, uma vez que ambas as fórmulas dependem de p. Então Arquimedes aproximou a área do círculo de raio unitário usando polígonos regulares de 96 lados inscritos e circunscritos! Seu famoso resultado foi 3 10/71 < p < 3 1/7; mas como estas eram apenas aproximações, no sentido estrito, não eram quadraturas. Esta técnica refinou o método de exaustão, assim quando existe um número infinito de aproximações poligonais, chamamos de método da compressão. O processo de Arquimedes para encontrar a área de um segmento de uma espiral era comprimir esta região entre setores de círculos inscritos e circunscritos: seu método de determinar o volume de um conóide (um sólido formado pela rotação de uma parábola ao redor de seu eixo) era comprimir este sólido entre cilindros inscritos e circunscritos. Em cada caso, a etapa final que estabelecia rigorosamente o resultado era o argumento da redução ao absurdo dupla.

        O termo integral, como usamos em cálculo, foi cunhado por Johann Bernoulli (1667--1748) e publicado primeiramente por seu irmão mais velho Jakob Bernoulli (1654--1705). Principalmente como uma conseqüência do poder do Teorema Fundamental do Cálculo de Newton e Leibniz, integrais eram consideradas simplesmente como derivadas "inversas". A área era uma noção intuitiva, quadraturas que não podiam ser encontradas usando o Teorema Fundamental do Cálculo eram aproximadas. Embora Newton tenha desferido um golpe muito imperfeito sobre a idéia de limite, ninguém nos séculos 18 e 19 teve a visão de combinar limites e áreas para definir a integral matematicamente. Em vez disso, com grande engenhosidade, muitas fórmulas de integração inteligentes foram desenvolvidas. Aproximadamente ao mesmo tempo em que a tabela de integrais de Newton tinha sido publicada, Johann Bernoulli desenvolveu procedimentos matemáticos para a integração de todas as funções racionais, o qual chamamos agora de método das frações parciais. Estas regras foram resumidas elegantemente por Leonhard Euler (1707--1783) em seu trabalho enciclopédico de três volumes sobre cálculo (1768-1770). Incidentalmente, estes esforços estimularam o aumento do interesse durante o século 18 na fatoração e resolução de equações polinomiais de graus elevados.

        Enquanto descrevia as trajetórias dos cometas no Principia Mathematica (1687), Newton propôs um problema com implicações importantes para o cálculo: "Para encontrar uma curva do tipo parabólico [isto é, um polinômio] a qual deve passar por qualquer número de pontos dados", Newton redescobriu a fórmula de interpolação de James Gregory (1638--1675); hoje, é chamada de fórmula de Gregory-Newton, e em 1711, ele ressaltou sua importância: "Assim as áreas de todas as curvas podem ser aproximadas ... a área da parábola [polinômio] será quase igual à área da figura curvilínea ... a parábola [polinômio] pode sempre ser quadrada geometricamente por métodos conhecidos em geral [isto é, usando o Teorema Fundamental do Cálculo]". O trabalho de interpolação de Newton foi estendido em épocas distintas por Roger Cotes (1682--1716), James Stirling (1692--1770), Colin Maclaurin (1698--1746), Leonhard Euler e outros. Em 1743, o matemático autodidata Thomas Simpson (1710-1761) encontrou o que se tornou um caso especial, popular e útil das formulas de Newton-Cotes para aproximar uma integral, a Regra de Simpson.

        Embora Euler tenha feito cálculos mais analíticos que geométricos, com ênfase em funções (1748; 1755; 1768), houve vários mal-entendidos sobre o conceito de função, propriamente dito, no século 18. Certos problemas de física, como o problema da corda vibrante, contribuíram para esta confusão. Euler identificou tanto funções com expressão analítica, que pensou em uma função contínua como sendo definida apenas por uma única fórmula em todo seu domínio. A idéia moderna de uma função contínua, independente de qualquer fórmula, foi iniciada em 1791 por Louis-François Arbogast (1759--1803): "A lei de continuidade consiste em que uma quantidade não pode passar de um estado [valor] para outro [valor] sem passar por todos os estados intermediários [valores] ...". Esta idéia tornou-se rigorosa em um panfleto de 1817 por Bernhard Bolzano (1781--1848) e é conhecida agora como o Teorema do Valor Intermediário. Funções descontínuas (no sentido moderno) foram forçadas na comunidade matemática e científica por Joseph Fourier (1768--1830) no seu famoso Analytical Theory of Heat (Teoria Analítica do Calor,1822).

        Quando Augustin Louis Cauchy (1789--1857) assumiu a reforma total do cálculo para seus alunos de engenharia na École polytechnique na década de 1820, a integral era uma de suas pedras fundamentais